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SUMMARY 
A finite difference technique that incorporates a numerical mapping has been successfully applied to analyse 
both planar and axisymmetric Newtonian jets. A pressure gradient equation and a free-surface slope 
equation have been derived for free-surface iteration. The computation of pressure inside the jet surface 
using the pressure gradient equation is stable and accurate at high Reynolds numbers. The free-surface slope 
equation is needed for updating the free surface and is applicable for jets with strong surface tension effects. 
The present development can simulate the Newtonian jets for Reynolds numbers as high as 2000 and 
capillary number as low as 10- *. Numerical predictions by the present technique are close to the results of 
previous finite element simulations. 
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INTRODUCTION 

Free-surface flows appear in many industrial operations. The simulation of free-surface flows 
presents a challenging problem because the location of the free surface is unknown and has to be 
determined simultaneously with the flow field. Three boundary conditions, i.e. the kinematic 
condition, the tangential stress balance and the normal stress balance, have to be satisfied on the 
free surface and usually one of the conditions is used to determine the position of the free surface. 
The jet swell problem has been a popular test case for free-surface flow simulations because 
experimental and theoretical works are available for comparison. Numerical developments for 
the jet swell problem were recently reviewed by Tanner.' The finite element method (FEM) has 
been successful for solving the Newtonian jet swell problem. Nickel1 et a1.' first simulated 
creeping Newtonian jets, and the kinematic condition was applied for free-surface iteration. 
Reddy and Tanner3 and Ornodei4s5 later solved jet swell with significant inertial and surface 
tension effects. Silliman and Scriven6 found that if the capillary number Ca is smaller than one, 
the normal stress balance should be used for free-surface iteration, but if Ca> 1, the kinematic 
condition should be used instead. 

Ruschak' introduced a boundary location method so that the jet free surface was determined 
together with the flow field through a full Newton iteration. Kistler and Scriven' elaborated this 
approach and successfully solved the coating flow problem. Georgiou et aL9 also used the same 
full Newton iteration scheme and obtained the jet swell ratio for Reynolds number Re as high as 
2000 and Ca as low as Kruyt et al." proposed a total linearization method so that 
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free-surface iteration could be implemented easier than the full Newton iteration. Georgiou et 
al.' applied the singular finite element method and accelerated the convergence on free-surface 
iteration with mesh refinement. 

Comparing with the FEM, the finite difference method (FDM) appears to have certain merits, 
such as: the formulation and mesh refinement are easy, and simulation for steady-state problems 
can be extended to time-dependent problems in a straightforward manner.", l 3  However, the 
development of the FDM for solving free-surface flow problems has been less popular than the 
FEM. 

Several authors attempted to solve the jet swell problem with a conventional finite difference 
method. H o r ~ f a l l ' ~  analysed the creeping Newtonian jets. Hill et al.' applied the marker-and-cell 
method to study the Newtonian jet for Re>O. Values of the jet swell ratio computed by these 
authors are quite different from the predictions based on the finite element method. The errors 
may come from fitting the jet free surface with grid points.' 

Recently, several authors avoided a direct fitting of the free surface by grid points through 
a numerical mapping technique, and the flow regime was transformed into a regular domain for 
numerical integration. Dutta and Ryan'' examined the creeping Newtonian jet problem; the 
kinematic condition was used to update the free surface, and the jet swell ratios they obtained 
were closer to the finite element predictions than those of previous finite difference studies. Ryskin 
and Leali6 solved the bubble deformation problem, and the normal stress balance was applied for 
updating the free surface. Dandy and Leal" applied a full Newton iteration method to determine 
the free surface together with the flow field simultaneously. Liu et ~ 1 . ' ~  extended the work of 
Dutta and Ryan12 to study the planar Newtonian jet with inertial forces included. They applied 
a numerical mapping technique, the boundary-fitted co-ordinate transformation method 
(BFCTM) developed by Thompson et ~ 1 . ' ~ '  l9 for co-ordinate transformation and they could 
obtain solutions for Re as high as 100 and Ca as low as 01. Later Yu and Liu2' modified the 
free-surface iteration scheme of Liu et al. and could obtain numerical solutions as accurate as the 
finite element simulations; however, the maximum Reynolds number in their study was still 
limited to 100. Yu and Liu2' found that as Re became large, computing pressure from the 
Navier-Stokes equation would cause serious oscillations on the jet free surface. 

In this paper, we shall describe a new finite difference technique to study the planar and 
axisymmetric Newtonian jet swell problems. We have derived a pressure gradient equation so 
that the computation of pressure remains stable and accurate at  high Reynolds numbers. 
A free-surface slope equation that combines the kinematic condition and the normal stress 
balance has also been derived for updating the free surface. With these developments, we are able 
to obtain solutions for Re as high as 2000, and Ca as low as The numerical solutions we 
obtained are very close to those based on the finite element method, the maximum difference for 
the jet swell ratio is less than 0.7%. 

MATHEMATICAL FORMULATION 

We consider the steady motion of an isothermal, incompressible Newtonian jet emanating from 
a slit or a circular die as shown in Figure ](a). We are interested in finding the effects of inertial 
and surface tension forces on the jet; the gravitational effects are neglected in the present study. 

We define a geometrical indicator c to represent two different co-ordinate systems; c=O 
corresponds to the Cartesian co-ordinate system for the slit die, whereas c = 1 corresponds to the 
cylindrical co-ordinate system for the circular die. 
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The following dimensionless variables are defined in the present analysis: 

z = i/a, r = :/a, H = h/a,  

u=U/(v>,  v = f i I ( v > 7  P=(P-PPatm)alP<u), (1) 

cp=@l(u)a, w = G a / ( v > ,  

where a is the characteristic length; it can be one-half of the slit gap, or the radius of the circular 
die. ( u )  is defined as the average speed far upstream inside the die, i.e. 

The stream function cp and vorticity w are used as the dependent variables and they are related to 
the velocity components u and o as follows: 

The equation of continuity is automatically satisfied with the definition of cp. cp and w are related 
by 

C’ D’ E‘ 

(b) 

Figure 1 .  Flow geometry in (a) the physical plane and (b) the transformed plane 
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and the vorticity transport equation can be obtained after eliminating the pressure terms from the 
Navier-Stokes equation: 

ar a Z  a Z  at- r ar )Irc7 ( (5 )  
acpaw aqao cacp -+ c-= Re _ _ _ _ _ + - - - o  a*w a Z w  caw 

az2 arz r ar rz  

where the Reynolds number Re is defined as Re E p ( u ) a / p .  The pressure in the whole flow field 
can be determined from the Navier-Stokes equation. 

Equations (4) and (5) are the governing flow equations for the jet problem. Owing to symmetry, 
we consider only the upper-half of the flow regime as shown in Figure l(a). If the dimensionless 
upstream length L1 and downstream length L2 are long enough, we can assume that the fluid has 
the fully developed velocity profiles at AC and BE. The corresponding boundary conditions for 
cp and w are as follows: 

(Bl) at AC (upstream) 

(B2) at BE (downstream) 

(B3) on the symmetry line CE 

(B4) on the wall AS 

cp=l/(l+c), a=-- a2'/rc, 
ar2 

(B5) on the free surface SB 
cp= l / ( l+c )  

and w is evaluated using the tangential stress balance condition (TSBC) that will be derived later. 
Three additional boundary conditions have to be satisfied on the free surface. An orthogonal 

co-ordinate system (s, n, 4) is introduced so that the three conditions can be conveniently 
expressed in this system. Define s as the distance along the free surface, n is the distance along an 
orthogonal trajectory to the surface and 4 which is measured from the n-axis is the azimuthal 
angle. e,  and en are unit vectors in the s- and n-direction, respectively. V, and V,, are the tangential 
and normal velocity components along the free surface. Define 8 3 tan- (u/u); then 8 is the angle 
between e, and the z-axis. Now the three conditions on the free surface are as follows: 

(i) the kinematic condition 
v, = 0, 

(ii) the tangential stress balance condition (TSBC) 

Ll = 0, (7b) 

z,, = p + R f Ca, (74 

(iii) the normal stress balance condition (NSBC) 

where the capillary number Ca is defined as Ca = p ( v ) / G ,  R is the total curvature defined 
as R = - V * en and the operator (V) is defined in Appendix 11. 
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We adopt the connection coefficients rijk and scale factors h, and h, of Ryskin and Lea121 to 
express the stress tensor tsn and tnn on the free surface. The derivation of T,, and t,, is given in 
Appendix 11, and the results are as follows: 

The velocity components V, and V,  and w are as follows: 

Substituting (Sa) and (9c) into (7b), we obtain the equation that is used to determine w on the free 
surface SB: 

w-2rn ,  v,=o. (10) 
The pressure term appears in the NSBC (7c), Yu and Liu2' integrated the Navier-Stokes 

equation to determine pressure and found serious oscillations occurred at high Re. Here we derive 
a pressure gradient equation to compute pressure on the free surface, and oscillations can be 
avoided. The s-component of the Navier-Stokes equation is as follows:. 

We have found that the convection term on the left-hand side of (1 1) causes numerical instability. 
To eliminate aV,/as in (ll),  the equation of continuity and (8b) have to be used; we obtain the 

final pressure gradient equation after some manipulation: 

A pressure boundary condition is imposed on the jet surface far downstream at point B, i.e., 

p - c / (C ,  Ca) = 0, (13) 
where Co = 6 / a  is the jet swell ratio. Equation (12) can be integrated from the downstream point 
B to the separation point S, and pressure along the free surface can be determined. 

It is important to note that previous authors13.20 were using (1 1) to determine pressure along 
the free surface. Since the jet becomes unidirectional far downstream, the jet surface should be flat 
and aVJas should approach zero. However, as Re is high enough, even if the error for estimating 
aV,/as on each grid point is small enough, the numerical integration starting from the point B will 
accumulate this error, and the product of the accumulated error and Re is no longer small. 
Consequently, p cannot be accurately determined and the previous authors failed to obtain 
solutions for Re > 100. Since the term aV,/as is eliminated, integrating (12) to obtain the pressure 
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distribution can avoid accumulating numerical errors. A numerical example in the later section 
will illustrate the difference of using (1 1) or (12) to compute pressure along the free surface. 

Liu et a l l 3  used the kinematic condition to update the jet free surface and failed to obtain 
solutions for Ca less than 0.1. Silliman and Scriven6 found that the kinematic condition should be 
used to update the free surface if Ca > 1, whereas the normal stress balance should be used instead 
if Ca < 1. We have combined the kinematic condition and the NSBC and derived a free-surface 
slope equation to update the free surface as follows: 

1 dF 2 ~ . ~ ~ = ( r ” ~ / c a - p ) s e c ~ 8 .  1 aF 
Ca h, a s  

The derivation of (14) is given in Appendix 111; here F is defined as speed ratio (u/u), and on the 
free surface F = tan 8 is the slope of the free surface. Since the jet is flat far downstream, or F = 0 at 
B, we can integrate (14) to obtain F on the free surface starting from B. Once F is obtained, we can 
integrate F starting from the separation point S to determine the position of the free surface. 

Equation (14) can be viewed as a combination of the kinematic condition and the NSBC. As 
Ca+O, the second term on the left-hand side of (14) becomes negligible, and integrating (14) is 
similar to integrating the NSBC. On the other hand, as Ca-, co, the first term on the left-hand 
side drops out, and (14) reduces to the kinematic condition. Therefore, (14) can be used for either 
low Ca or high Ca, and we are able to obtain solutions over a wide range lo-’ < Ca < lo’. 

CO-ORDINATE TRANSFORMATION 

To solve the jet problem, we need to transform the flow geometry in Figure ](a) to a regular 
domain for numerical integration. The numerical mapping technique BFCTM developed by 
Thompson et ~ 1 . ’ ”  l 9  was adopted. The correspondence between the physical plane ( z ,  r )  and the 
transformed plane (5, q) is given in Figure l(b). The grid distribution can be determined by solving 
the following mapping equations: 

in which 

where J is the Jacobian of the transformation. P and Q are forcing functions that can be assigned 
arbitrarily to regulate mesh distribution. 

Dirichlet boundary conditions are imposed on the boundary of the regular domain in the 
transformed plane and the procedure for solving (15) is identical to that of Reference 13. 

The flow equations (4) and (5) are also transformed to the (t, q )  plane: 
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and 

a 2 w  a 2 w  a2w aw acp 
at: aratl all a5 art a ~ - 2 ~ - - - + y y + R 1 - + R 2 - + R 3 w = 0 .  

The coefficients R 1 ,  R2 and R3 are as follows: 

CJ 82 Re Jacp 
R 2 = - - + - -  + J 2  Q,  r at: re ag 

Once cp is determined, the velocity components can be computed as follows: 

Boundary conditions in the transformed plane are: 

(Tl) on A'C' 

(T2) on B E '  

(T3) on C 'E  

(T4) on A'S' 

cp=-  - +cr l+c-  r3.C). 
2 ( l + c  w = (3 + c)r, 

(T5) on SIB' 

cp= 1/(1 +c), ~ = 2 r , , , , y ~ ' ~  - ( rcJ) .  (204 "1  all 

The pressure gradient equation and the free-surface slope equation have the following forms in 
the transformed plane: 

(21) 
a P  
- + a1 (5 ,  V I P  = bl(t:,ll),  a5 
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The coefficients are: 

NUMERICAL PROCEDURE 

It takes three steps to solve the jet problem numerically; the first two steps, i.e. numerical mapping 
and solution of the flow equations, are similar to the work of Liu et aI.13 and are explained only 
briefly here. The third step which is used to update the free surface is different from previous 
studies, and a detailed explanation is necessary. 

Numerical mapping 

(1) For a given set of (Re, Ca),  select the dimensionless upstream length L1 and downstream 
length L2 so that the assumption that fluid flow has the fully developed velocity profiles is 
not violated. The upstream length L1 was fixed to be 3 in the present study. As Re goes up, 
L2 has to be longer; we followed the suggestion of Georgiou et aL9 to select L2. 

(2) Guess an initial profile for the free surface; we selected H =  1 for all the cases. 
(3) Set up proper boundary conditions for the mapping equations, more boundary points are 

imposed in the neighbourhood of the separation point S. Guess an internal grid distribu- 
tion. 

(4) Select proper forcing functions P and Q. Liu et al.13 fixed P = Q = O  in their study, but the 
grid lines in the r-direction were slightly curved, particularly in the neighbourhood of the 
separation point. This may be corrected by selecting 
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Once the grid lines in the r-direction are not curved, more accurate numerical solutions can 
be obtained. 

( 5 )  The mapping equations are discretized with standard central-difference formulas and the 
discrete system is solved by the successive line overrelaxation method. 

Solution of thefiow equations 

(1) Give guessed values (cp, w)  for all interior grid points. 
(2) Apply the successive line underrelaxation method to solve the discrete flow equations. 

Again, standard second-order difference formulas are used to discretize the flow equations. 

Updaiing the free surface 

(1) The pressure gradient equation (21) is discretized in the middle of two grid points i and i + 1, 
i.e. 

Substituting (26) into (21), we obtain 

The boundary condition ( 1  3) for pressure is given on the grid point B ( M ,  N ) ;  so we can use 
(27) to determine p from point B to point S'. Values of p are needed in the free-surface slope 
equation. 

(2) To solve the free-surface slope equation (22), we first expand the term aF/aq as follows: 

where k stands for iteration number, k + l  is the current iteration number and k is the 
previous iteration number. Ff,+N1 is the unknown that has to be determined. Substituting 
(28) into (22), we have 

The mathematical form of (29) is similar to (21); therefore, (29) can be discretized in the same 
way as (26). On B', FY, = 0; so we can integrate (29) from B' to S', i.e. the slope on the free 
surface is completely determined. 

(3) Once F is determined, we can obtain the free-surface position H ( z )  by integrating F numer- 
ically starting from the separation point S: 

H ( z )  = 1; F dz. 
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-0.9 

(4) Test for convergence. If the maximum difference between the current values of cp, w and 
H ( z )  and the previous values is smaller than a preset tolerance, the computation is 
complete; otherwise, replace the old values of cp, w and H ( z )  by the current values and start 
the iteration again from Step (4) in Numerical Mapping. 

0 - A 

RESULTS AND DISCUSSION 

In the present study, all the computations were carried out on a HP 9000/835 machine. The 
tolerance of convergence for cp, o and H ( z )  was fixed to be 1.0 x The relaxation factor for 
the mapping equations was 1.5 and was between 0.8 and 1.0 for the flow equations. Since a longer 
L2 is required as Re increases, the suggestion of Georgiou et aL9 was followed to select an 
appropriate L2 for a given Re. The residual of the downstream pressure condition (13) was 
computed if the residual was less than L2 was considered to be long enough. We found that 
L2 suggested by Georgiou et aL9 was adequate for the present finite difference simulation. 

We first check the pressure distribution inside the free surface for a planar Newtonian jet. Liu 
et d . 1 3  failed to obtain solutions for Re > 100 and Yu and LiuZo found that iteration on pressure 
was very slow to converge if the Navier-Stokes equation was used to determine pressure 
distribution inside the jet surface and oscillations would appear if Re was too high. We first solved 
the planar Newtonian jet problem for Re = 100 and Re = 200, then we used the pressure gradient 
equation to compute the pressure distribution inside the jet surface. The pressure distribution was 
also computed using the method of Liu et a l l 3  i.e. integrating the Navier-Stokes equation. The 
results are shown in Figure 2. It is easy to see from the NSBC (7c) that as Re becomes large, the 
viscous term t,, becomes negligible and the pressure force is balanced by the surface tension force. 
If the curvature of the jet surface goes to zero, the pressure should approach zero, too. The 
curvature of the jet surface varies rapidly at the die exit, but it soon approaches zero at a certain 
distance from the separation point. The pressure distribution should behave similarly. The 
pressure distribution predicted by the pressure gradient equation is consistent with this behaviour 
as indicated by the curves in Figure 2, whereas the results based on the method of Liu et ~ 1 . ' ~  

p f z )  

:::[ O 

A 

- 0.L 0 

0 

. o  

. o  A 

A 

-0.71 -0.8 ," 

L 

Figure 2. Planar jet: the pressure distribution inside the jet surface with Ca = lo5. Re = 100: __ present work; 0 values 
based on the method of Liu et al. (1991); Re =200:---present work; A values based on the method of Liu et al. (1991) 
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appear to be incorrect. This explains that using the pressure gradient equation to compute 
pressure can extend the range of convergence from Re = 100 to Re = 2000. 

The CPU time for several cases is given in Table I. As Re increases, L2 is longer and more grid 
points are needed. Since the initial profile was selected to be H = 1 for each case, it required less 
computing time for the case of high surface tension or small Ca because the free-surface profile 
was closer to H = 1. Comparing the case Re = 0 with Re = 1000, we observe that although the 
number of grid points increases 6-8 times, the CPU time required is increased only 5-7 times. 
This is quite different from the situation if the full Newton iteration as proposed by Dandy and 
Leal” is applied; CPU time would increase significantly as the number of grid points increases. 

Table I. CPU time required for nine cases 

Planar jet Axisymmetric jet 

Grid CPU time Grid CPU time 
Re Ca L2 points (unit)* points (unit)‘ 

0 105 25 21 x 181 
1 
10-5 

10- 5 

10-5 

100 105 100 21 x 481 
1 

1000 105 500 21 x 1531 
1 

1 
0.701 
0.090 
1.322 
1.118 
0 2 3  1 
5.501 
4.549 
3.128 

21 x 181 1 
0.652 
0.48 8 

21 x 661 2.482 
2.302 
1.950 

21 x 1201 7.23 1 
6 9 7 1  
4.080 

~~~~ ~ 

* 1 unit = 15.1 min on the HP 9000/835 machine ( - 0 1  compiler). 
1 unit=18.0 rnin on the HP 9000/835 machine ( - 0 1  compiler). 

0.80 0.851 0 1 2 3 4 5 6 7 8 9 10 11 12 

Z 

Figure 3. Axisymmetric jet: the effect of Ca on the jet free-surface profiles at low Reynolds numbers. ( 1 )  Re = 0, Ca = lo’: 
__ present work; 0 Georgiou et al. (1988). (2) Re=O, Ca = lo-’: . . . . present work; A Georgiou et al. (1988). 
(3) Re = 8, Ca = lo5: ---present work; Georgiou et al. (1988). (4) Re = 10, Ca = 10’: -.-.present work + Georgiou 

et al. (1988) 
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1.1 0 

1.05 

1.00 

The free-surface profiles we simulated were compared with the predictions of Georgiou et al.’ 
for axisymmetric jets in Figures 3 and 4 and with the predictions of Omodei’ for planar jets in 
Figure 5. Figure 3 displays the effect of surface tension on the jet surface at  low Reynolds 
numbers; Figures 4 and 5 show the effect of Reynolds number. It is clear that the profiles we 
computed are close to the finite element simulations over a wide range of Re and Ca. 

b 

- 

- 

0 20 40 60 80 100 120 140 

Z 

Figure 4. Axisymrnetric jet: the effect of Re on the jet free-surface profiles with Ca = 10’. (1) Re = 1W-present work; 

A Georgiou et nl. (1988) 
0 Georgiou et al. (1988). (2 )  R e =  300:---present work; Georgiou et al. (1988). ( 3 )  Re=2000: . . . .  present work; 

Z 

Figure 5. Planar jet: the effect of Re on the jet free-surface profiles with Ca = lo5. Re = 300: ~ present work; 0 Ornodei 
(1979). R e = 5 0 0 : .  . . .  present work A Ornodei (1979) 
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The jet swell ratio Co as a function of Re is given in Figure 6. Values of Co determined by the 
present development are close to those computed by Georgiou et aL9 The maximum difference is 
approximately less than 0.7%. The effect of Ca on the jet swell ratio Co for an axisymmetric jet is 
shown in Figure 7. Values of Co determined by Georgiou et aL9 are also given in the figure. 
Similarly, our predictions are in good agreement with those of Georgiou et al.' 

Figure 6. The jet swell ratio Co as a function of Re with Ca = 10'. Planar jet:---present work; A Georgiou et a!. (1988). 
Axisymmetric jet:-present work; 0 Georgiou et al. (1988) 

------------- 

1- 

Co 

Figure 7. Axisymmetric jet: the effect of Ca on the jet swell ratio C,,. (1) Re=O-present work; 0 Georgiou et al. 
(1988). (2) Re= 10:-present work; A Georgiou et al. (1988). (3 )  Re= 100:---Present work 0 Georgiou et al. 

(1988) 
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co 

1 I 1 1 I I I 
10 20 30 40 50 60 70 /O Q80h 

Re 

Figure 8. Planar jet: the jet swell ratio Co as functions of Re and Ca. ( l ) -Ca= lo5; (2) . . . . Ca= 1; 
(3) - - -Ca=10-’ ; (4)  - - -Ca=lO-’  

Figure 8 presents the jet swell ratio Co as functions of Re and Ca over a wide range for a planar 
’jet. Apparently, the effect of surface tension is important if Ca is less than one. As Re is higher than 
15, the jet will shrink instead of swelling. If Ca is small, the jet will swell first and then shrink as Re 
goes up, and the maximum values of Co can be found in the range 5 6 Re < 10. 

We also checked if the conservation of mass was satisfied on the free surface. The residuals of 
the conservation of mass were computed and we found the values are much smaller than those of 
the previous studies.”. l 3  The maximum error appears on the separation point and has an order 
0(1), but the residuals decay rapidly along the jet free surface. 

CONCLUSIONS 

We have developed a finite difference technique for solving the Newtonian jet swell problem. The 
finite difference technique incorporates a numerical mapping so that the flow regime is trans- 
formed to a regular domain for numerical integration. 

We have derived a pressure gradient equation to compute the pressure distribution along the 
jet surface. Integrating this equation to obtain pressure is a more accurate procedure than a direct 
integration of the Navier-Stokes equation. A free-surface slope equation has also been derived to 
update the free surface during the iteration process. This equation can be viewed as a combina- 
tion of the kinematic condition and the normal stress balance condition. With these two 
equations, we are able to obtain solutions for Reynolds numbers as high as 2000 and capillary 
numbers as low as 

Numerical solutions for both planar and axisymmetric jets have been obtained and the 
theoretical predictions based on the present development are in good agreement with the results 
based on the finite element simulations. Values of the jet swell ratio as functions of the Reynolds 
number and capillary number have been presented. 
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APPENDIX I: NOTATION 

characteristic length 
coefficients of the pressure gradient equation, [equation (21)] 
coefficients of the free-surface slope equation, [equation (22)] 
geometrical indicator 
capillary number (= p(v ) /a )  
jet swell ratio (= 6/a) 
tangential and normal unit vectors on the free surface 
speed ratio (= u/v) 
location of the free surface, dimensional and dimensionless 
scale factors, Appendix A 
index 
Jacobian of the mapping equations, [equation (15c)l 
iteration number 
numbers of grid points in the transformed plane 
fluid pressure, dimensional and dimensionless 
forcing functions 
atmospheric pressure 
total curvature (= - V en) 

787 

R1, R z ,  R3 coefficients of equation (17) 
Re 
s, n, (p 
u, u 
0, v 
V,,, V, 
( v >  
(i, 3, ( z ,  r) co-ordinates in the physical plane, dimensional and dimensionless 

Reynolds number ( = p ( v )  alp) 
orthogonal co-ordinate system on the free surface 
velocity component in the r-direction, dimensional and dimensionless 
velocity component in the z-direction, dimensional and dimensionless 
tangential and normal velocity components on the free surface 
average fluid speed upstream in the die 

Greek letters 

coefficients of the mapping equations, as in equation (15c) 
one-half of the final jet thickness 
mesh sizes in the transformed plane 
connection coefficients 
the angle between e, and the z-axis 
fluid viscosity 
co-ordinates in the transformed plane 
fluid density 
surface tension coefficient 
stream function, dimensional and dimensionless 
vorticity, dimensional and dimensionless 

APPENDIX 11: VARIABLES IN THE CO-ORDINATE SYSTEM (s, n, 4 )  
The velocity components Vs and Vn are related to u and v as follows: 

V, = ucos 8 + usin 8, 

Vn = -usin 8 + ucos 8. 
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The operator V is defined as 

i a  i a  i a  
h,as h,an f a &  ” 

V =--es +- -en +- -e 

where the scale factors h, and h, are defined as 

(33) 

The connection coefficients rijk are needed in co-ordinate transformation. A given rijk represents 
the i-component of the rate of change in e j  along f?k. There are eight non-zero connection 
coefficients;16 they are related to the scale factors as follows: 

r,nd = - r,,, = (ar/an). 
rhn 

The stress tensor T is defined as T z (Vv + Vv’), and the components T,,, and t,, can be found by 
substituting the conditions V, = 0 and a V,/as = 0 into the definition: 

1 av, 
h, an t,, = - - + r n s s  vs, 

APPENDIX 111: DERIVATION O F  THE FREE-SURFACE SLOPE EQU 

We have on the free surface 

v, = 0, 

u = u tan6 

and from (31), we obtain V, on the free surface as follows: 

V, = u sec 0. 

TION ( 

(37) 

(38) 

(39) 

(40) 
Differentiating (32) with respect to n and substituting (38H40) into the resulting equation we 

obtain 
a6 ae vs-+ vs-=o a Vn -=- 

an an an 
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on the free surface. Therefore (8b) reduces to 

z n n  = 2 r n s n  vs. 

The total curvature R is defined as 

R r  -V .e ,  = -(rsns+r,+,+). (43) 
We define F as the ratio of u to v, and on the free surface we have F = (u/u) = tan 8; therefore, 
F reduces to the slope of the free surface on the jet surface. From the definition of rnsn and TSns, we 
have 

combining (42) and (43), (44) and (454 and then substituting the results into the NSBC (7c), we 
obtain the free-surface slope equation (14). 
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